
Sound velocity in liquid metals and the hard-sphere model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys.: Condens. Matter 11 L71

(http://iopscience.iop.org/0953-8984/11/10/002)

Download details:

IP Address: 171.66.16.214

The article was downloaded on 15/05/2010 at 07:10

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/11/10
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter11 (1999) L71–L74. Printed in the UK PII: S0953-8984(99)00370-7

LETTER TO THE EDITOR
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Abstract. It is pointed out that two, approximately ‘universal’,dimensionlessmajor charact-
eristics of the sound velocity in liquid metals are also shared by the hard-sphere system asintrinsic
properties of that simple model.

In recent reviews [1] of some of the more important thermodynamic properties of liquid metals
it was noted that the sound velocity,c, divided by the thermal velocity has about the same value
for many liquid metals near their melting point. Typically [1,2],(

c
/(kBT

M

)1/2)
T=Tm

∼ 10 (1)

whereTm is the melting temperature andM is the atomic mass, with a spread of values between
∼6 and∼12. Except for a few anomalous cases [3] like Sb, Te, and Ce, the sound velocity
decreases very slowlywith the temperature, and typically [1,2,4],(

T

c

∂c

∂T

)
T≈Tm

∼ −0.2 (2)

with a spread of values between∼− 0.1 and∼− 0.3. The velocity of sound is given by

Mc2 =
(
∂P

∂ρ

)
S

=
(
∂P

∂ρ

)
T

+
T ((∂P/∂T )V )

2

ρ2CV /N
(3)

whereP ,S,ρ = N/V ,N ,V , andCV denote the pressure, entropy, density, number of particles,
volume, and heat capacity at constant volume, respectively. Even the so-called ‘simple’ liquid
metals represent complicated many-body nucleus–electron systems [5]. No simple model
system can providedetailedagreement with the thermodynamics of liquid metals that will
thus also reproduce the ‘quasi-universal’ magnitudes (1) and (2), especially since they require
also the knowledge of themelting temperature. In turn, this quasi-universality by itself, in
view of the differences in the details of the thermodynamic properties between classes of liquid
metals, ‘invites’ one to seek a simple model system which can provide a general intuitive feeling
for how the magnitudes (1) and (2) come about. The hard-sphere model has a long history of
useful applications to the structure and thermodynamics of liquid metals [4,6], mainly playing
the role of a reference system in perturbation theories, but there was no reason to expect such
general trends and values as (1) and (2) for liquid metals to also happen to beintrinsicproperties
of the simple hard-sphere system.

The purpose of this short letter is to point out that these two major ‘quasi-universal’
dimensionlesscharacteristics of liquid metals are also shared by a collection of classical hard
spheres. The classical system of hard spheres, perhaps the simplest classical system with
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pairwise interactions which exhibits the freezing transition, certainly cannot reproduce the
detailed thermodynamics of liquid metals in detail, yet by coincidence it provides a represent-
ative simple generic model for these quasi-universal features.

For a classical system of hard spheres of radiusR the heat capacity is purely kinetic,
CV = 3

2NkB , and the compressibility factor

P

ρkBT
= p(η) (4)

is a function of only the packing fraction

η =
(

4π

3
R3

)
N/V.

A good fit to the simulation data is given by the Carnahan–Starling expression

p(η) = 1 +η + η2 − η3

(1− η)3 (5)

and the fluid density at the melting temperature isηF = 0.494 [7].
Using (4) and (5) we can obtainη as function of the ratioP/T from the equation(

4π

3
R3

)
P/(kBT ) = ηp(η) ≡ ψ(η). (6)

Using (3) we obtain

c
/(kBT

M

)1/2

= s(η) (7)

and

M1/2c
/((4π

3
R3

)
P

)1/2

= s(η)

(ηp(η))1/2
≡ f (η) (8)

where

s(η) =
(
p(η) + η

dp(η)

dη
+

2

3
p(η)2

)1/2

. (9)

In view of the physical significance of the packing fraction we display the results using
η as a parameter. The functions(η) is shown in figure 1(a) where we plotc/(kBT /M)1/2

(using equation (7)). In particular, we see that near melting (η ∼ 0.5) it is about 12. In most
mappings of liquid metals onto the hard-sphere system their melting points correspond toη

between∼0.4 to∼0.5, for whichs(η) varies between∼6 to∼12, in general agreement with
(1). For a given pressure, the functionf (η) describes the velocity of sound as function of
temperature:η ∼ 0.5 corresponds to the melting temperatureTm, while η � 1 corresponds
to the ideal-gas limit ofT � 1 for which

f (η) =
(

5

3η

)1/2

and thus

c =
(

5

3

kBT

M

)1/2

.

The overall behaviour is shown in figure 1(b) where we plot the ratio

c(T )/c(Tm) = f (η)/f (η = 0.494)
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Figure 1. Various ‘constant-pressure’ properties of the hard-sphere system as a function of the
packing fractionη. (a) The ratio of the sound velocity to the thermal velocityc/(kBT /M)1/2.
(b) The ratioc/cm of the velocity of sound to its value at meltingcm = c(Tm). (c) The ratioT/Tm.
(d) The logarithmic temperature derivative of the sound velocity,∂ ln c/∂ ln T = (T /c) ∂c/∂T .
See the text.

using (8). The sound velocity decreases from the melting temperature (i.e.η ∼ 0.5), and after
passing through theminimumvalue at aboutη ∼ 0.26 it then increases eventually likeη−1/2

for η � 1. In figure 1(c) we plot the ratio

T/Tm = ψ(η = 0.494)/ψ(η)

using (1). By comparison of figure 1(b) with figure 1(c) we find that the minimum in the sound
velocity is atT ≈ 7Tm, and we see that asη varies from 0.494 to 0.415,T/Tm varies from
1 to about 2, while the velocity of sound changes only by about 10%. Correspondingly, the
temperature derivative

∂ ln c

∂ ln T
= T

c

∂c

∂T

(using equations (6) and (8)) given in figure 1(d) varies from about−0.3 nearη ∼ 0.52 to about
−0.1 nearη ∼ 0.45, and it is about−0.2 nearη = ηF = 0.494 (i.e.T = Tm) in agreement
with (2).

The hard-sphere pressure and heat capacity are certainly not adequate models for the
corresponding properties for liquid metals. The hard-sphere system serves only as a reference
system in thermodynamic perturbation theory, which defines aneffective hard-sphere packing
fraction, η(ρ, T ). However, that effective packing itself is also useful when considering
experimental results for the structure factor and transport coefficients in terms of a collection
of hard spheres [4,6]. The present observation that the hard-sphere values for(

c
/(kBT

M

)1/2)
T=Tm

and

(
T

c

∂c

∂T

)
T≈Tm

are so close to the experimental values for many liquid metals should likewise be useful.
Anomalous behaviour in systems like Sb, Te, and Ce can also be interpreted in terms of
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effective hard-sphere diameters as affected by structural changes resulting from electronic
transitions.
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